当前位置: > 硕士毕业论文 > 37410字硕士毕业论文粗糙标准激光散斑的统计特性及微动试验

37410字硕士毕业论文粗糙标准激光散斑的统计特性及微动试验

论文类型:硕士毕业论文
论文字数:37410字
论点:激光,目标,散射
论文概述:

本文依据粗糙面散射理论、时域散射二阶统计特征,结合粗糙物体激光散射,针对技术发展需求,研究了粗糙面激光散斑统计特性、探测孔径上积分散斑的统计特性、运动目标产生的动态散斑特

论文正文:

第一章导言

1.1研究背景和意义
激光的出现给光学领域带来了革命性的变化。激光因其高亮度、高相干性和高准直性,在工业、军事、通信、医学和科学研究领域发挥了独特的作用。目标激光的散射特性描述了激光与目标相互作用引起的物理现象,揭示了目标与激光相互作用的内在本质。随着激光技术的日益成熟及其应用领域的不断扩大,各种激光系统在军事和航天领域发挥着至关重要的作用。在以激光为光源的系统中,高相干激光从粗糙表面反射或通过折射率随机波动的介质传播时,会形成随机强度分布,即激光散斑。传统上,在诸如雷达天文学、孔径雷达、声学成像和激光全息术的成像信息系统中,激光散斑通常被认为是影响图像信息质量的噪声,并且被抑制了[1-5]。然而,根据散射理论,激光散斑的形成与目标特性、照射光场、接收孔径等密切相关。即激光散斑也携带光波和散射物体的信息。因此,激光散斑被广泛用作许多领域的信息载体,例如测量(物体振动、位移、变形、粗糙度、晶体长度变化)、材料裂纹检测、微血管血流、生物组织和医学诊断[6-15]。随着光电探测器电荷耦合器件(电荷耦合器件)制造和计算机技术的发展,激光散斑测量技术省略了传统的显影和定影过程,人们将激光散斑测量技术与光学信息处理、全息术、干涉测量和表面粗糙度测量技术相结合,使得激光散斑测量在工程、国防等领域具有巨大的应用前景[16]。同时,由于激光散斑测量技术具有结构简单、不需要光学光滑表面、全场非接触测量、无损实时性等优点。,它已逐渐成为[17-29]各种光学测量和检验的理论和应用研究的焦点,因此进一步研究激光散斑测量技术具有重要意义。另一方面,在高分辨率3D目标识别成像中,通常通过测量目标的距离分辨激光雷达散射截面来预测和检测诸如目标的形状、尺寸和表面散射特性的基本信息。因此,如何以更高的分辨率测量距离分辨激光雷达散射截面一直是研究的热点。对于粗糙度大于入射激光波长的目标,激光散斑图像中包含的目标物理信息为无损测量和检测提供了可能性。激光波长变化引起的散斑图像进一步沸腾和去相关成为提高目标距离分辨率识别的新理论基础。频率可调的激光连续照射粗糙目标时,后向散射形成的散斑场呈现沸腾去相关状态,激光波长变化引起的散斑强度波动交叉谱密度函数与目标的距离分辨激光雷达散射截面密切相关。利用激光散斑波长去相关技术可以获得距离分辨激光雷达散射截面,最终得到目标的尺寸、形状和表面特征。散斑去相关技术广泛应用于激光雷达目标识别和检测。它可以降低对光学成像系统设备的要求,获得更高的目标分辨率。它还为机械视觉3D成像和空等工业方面提供了重要的技术基础。当检测和识别的粗糙目标处于复杂运动状态时,例如包括快速平移、微章动和旋转,运动的多普勒频移与测量频率成比例。虽然雷达检测可以跟踪目标,但对于少量多普勒频移,很难检测和获得目标的转速或周期,成为微小运动目标特征提取和识别的瓶颈。目标激光散斑波长去相关技术利用波长可调的激光照射目标,产生的激光散斑图像显示平移和沸腾现象。利用比微波截面高3~4个数量级的多普勒频移和粗糙旋转物体的动态散斑图像处理,可以获得目标的微动特性。因此,研究激光散斑的统计特性,通过激光散斑沸腾状态和波长去相关技术提取目标的形状和尺寸特征,通过激光散斑平移状态特征提取目标的微动参数作为一种新的目标识别和检测方法,也是激光雷达目标检测和识别的关键技术之一,能够检测、识别和分析空、地面背景目标等之间目标的光学特性。通过实验数据采集、理论预测、建模和仿真研究,为目标监测、跟踪、特征提取和识别提供了重要的技术支持。

1.2国内外研究进展

1.2.1激光散斑的静态统计特性
自1981年以来,山口等一直致力于小变形下激光散斑测量的位移和相关效应的研究。从物体变形前后散斑场的互相关函数出发,推导出相关函数与相关位移、相关位移和物体变形的关系。在小变形的前提下,假设散斑位移在小区域内均匀变化,给出衍射场位移、客观散斑记录、主观散斑、散焦和成像记录远离中心与物体表面变形的关系,并通过面内位移、面内应变和面外位移等实验进行验证。根据这些理论,山口利用一维光电二极管线阵接收散斑场,根据互相关函数的极值判断真实散斑位移,成功研制出激光散斑应变仪。之后,他们将散斑位移理论推广到圆柱体,并计算了圆柱体扭转时的轴向应变和剪切应变[33-34]。同时,季峻·欧·津波(OH Tsubo)和Toshimitsu Asakura等人利用贝塞尔函数的二阶无限阶给出了部分展开散斑强度微分的概率密度函数的近似形式,并得到了特殊情况下完全展开散斑的概率密度函数[35]。此后,拉西格尼等人提出了一种模拟高斯随机表面的方法。根据基尔霍夫近似,模拟了一维高斯随机表面散射的不同偏振态入射光的强度分布,为模拟二维激光散斑场[36奠定了基础。托马斯·舒默(ThomasThumer)等人发现,模拟散斑场的性质与成熟的散斑场理论[37]一致。20世纪90年代,古迪米拉、拉奥等。为部分展开的散斑图像强度构造了三点联合概率密度函数,改进了一阶贝塞尔函数产生的无限项之和,解释了与完全展开的高斯散斑对应的概率密度函数,并利用该结果获得了附加条件下的强度密度函数,从而促进了光散射问题的研究和激光雷达[38]光信噪比计算的发展。此外,他们获得了不相关的激光散斑图像、部分发展的散斑中两点的强度概率密度函数和强度相关函数,并将孔径平均方法应用于散斑消除技术[39]。O. Korotkova等人基于Rytov理论和Kolmogorov谱模型,推导出当入射光为球面波和平面波时,粗糙表面是在准光滑和长波目标的两种有限情况下满足高斯谱的薄子相位屏模型,并利用双战争装置[40]分析解释了粗糙目标的最低阶高斯光束在强或弱空气体湍流情况下的互相关函数和闪烁指数函数。

第二章激光散斑强度的概率密度函数

2.1简介
从可见光波长的尺度分析来看,一般物体的表面是粗糙的,因此该表面可以被视为由大量随机分布的表面元素组成。当相干光照射这种表面时,每个表面元件相当于衍射单元,整个表面相当于由大量随机分布的衍射单元组成的“相位光栅”。对于相对粗糙的表面,由不同衍射单元引入入射光的附加相位的差异可以达到2π的数倍,并且由不同表面元件透射或反射的光以/振动。由于不规则的分布和大量的面元,干涉效应会随着观测点的变化而迅速而不规则地变化,从而形成随机分布的颗粒结构的衍射图样——散斑[3]。当光学粗糙表面被高相干激光照射时,激光散斑图案将如图2.1所示。根据散斑的形成,可以知道散斑图像的形成与诸如物体的表面特性和照明光场的相干性等因素相关。当目标表面的粗糙度等于或大于激光波长时,激光散斑显示出一些明显的特征:①散斑图像显示散射光形成的三维空之间的高对比度。(2)入射光频率的变化或粗糙目标的轻微移动导致散斑图像移动或去相关。因此,可以用高相干激光照射目标表面,并且可以通过不同的散斑图像获得目标信息。激光散斑是由相干光照射的粗糙目标表面产生的,因此是一个随机过程。为了研究散斑现象,通常采用概率统计方法来获得散斑的强度分布、对比度和运动规律等特征。

第三章接收孔径对曲面目标激光束的影响.........31
3.1导言.........31
3.2旋转曲面产生的散斑强度互相关函数.........31
3.3检测孔径对互相关函数的影响.........33
3.4方形接收孔径上弯曲目标激光散斑的散斑特性.........40
3.5粗气缸.........47
3.6概述.........54
第四章动态散斑的平移和沸腾.........55
4.1导言.........55
4.2散斑强度波动的相关函数.........56
4.3综合散斑强度的统计特征.........70
4.4散斑运动的特征.........72
4.5多普勒效应与散斑运动状态的关系.........84
4.6概述.........88[/溴/]第五章目标微动的激光散斑测量.........89
5.1导言.........89
5.2目标三维平移的散斑测量.........89
5.3振动引起的动态散斑特性.........95
5.4圆柱体旋转的动态散斑及其光谱特性.........101
5.5……108

结论

基于粗糙表面散射理论、时域散射和粗糙物体激光散射的二阶统计特性,针对技术发展的要求,研究了粗糙表面激光散斑的统计特性、探测孔径上积分散斑的统计特性、运动目标产生的动态散斑特性、动态散斑测量目标的运动特性、距离分辨激光雷达散射截面的计算和激光散斑的波长去相关特性。结果如下:
1研究了粗糙表面激光散斑的强度相关函数和功率谱密度。导出了散射光场中任意点瞬时强度的统计分布和物理模型。给出了探测器上两个独立散斑和多个散斑情况下散斑强度的概率密度函数。对平面标准板和圆柱靶产生的散斑图像进行了实验测量,并对概率密度函数特性进行了计算和分析。
2基于粗糙表面散射理论,给出了远场旋转曲面散射高斯光束的动态散斑特性。推导了探测孔径上散斑强度波动的互相关函数模型,计算了平面目标和球面目标之间的相关距离。分析了曲面目标以恒定角速度旋转时散斑强度波动的相关时间与曲率半径之间的关系。推导了目标旋转引起的散斑相关角的表达式,并模拟和测量了方形检测孔径上散斑数和散斑大小的变化特征。考虑到远场情况,给出了入射光束照射面积大于柱面尺寸时散斑强度波动的相关函数。从数值计算和实验测量两方面分析了空与圆柱半径和圆柱转速之间的相关长度和相关时间。
3给出了平行光束、高斯光束和高斯谢尔模式光束分别通过自由空、单透镜和双透镜光学系统照射运动目标形成的动态散斑的统计特性。在各种光学条件下,导出了散斑强度起伏相关函数的相关时间、时间延迟和多普勒频移的具体形式。结果表明,当散射目标在空之间匀速运动时,散斑沸腾状态随着散斑透射距离与散斑尺寸之比的减小而变得更加显著。当目标以空之间的不均匀速度移动时,散斑沸腾状态将受到光学系统中散射光的多普勒频率差的影响。
4建立了高斯光束辐照三维平移、振动和旋转条件下散斑强度波动的相关函数和功率谱密度的统计模型。给出了时变散斑强度波动的自相关函数与目标运动速度的关系以及入射高斯光束束腰半径对测量的影响。描述了衍射场中振动散斑的平均功率谱特征及其决定因素。用王文的分析方法,给出了旋转圆柱体散射接收功率谱的近似形式。分析和估计平移效应功率谱密度的带宽取决于接收场散斑的大小和目标的旋转速度,以及旋转诱导散斑平移和散斑沸腾对接收信号带宽的影响。实验测量并分析了激光散斑强度的转速与相关时间之间的相关性。这些结果为利用动态散斑自相关函数及其功率密度相对测量目标运动特性提供了理论参考。

参考
[1]古德曼j . w:lastspec http://sblunwen.com/tjzylw/模式的统计性质:last spec和相关现象[m]。海德堡:柏林斯普林格,1975,p:9~75
[2]俞福泰,王爱英:利用随机空间采样减少全息术中的散斑,[,应用,选择。[1973,12(1),p: 6561659
[3]马丽红,汪卉,金为民,金洪珍:《数字全息重建图像中散斑噪声的减少》,[,1973年。SPIE,全息术和衍射光学三2008,6832,p:683227
[4]安斯,拉普丘克·阿,尤洛夫等:用几个部分相干光束抑制激光显示中的散斑[·杰],光学快报,2009,17(1),p:92~103
[5]申善成,柳善斯,李善英:用旋转屏幕系统去除背投屏幕上的热点散斑[·杰],显示技术杂志 《应用光学》,1985,24(18),p:3053~3058
[8]彼得斯·威赫,兰森·威夫:实验应力分析中的数字成像技术[》,光学工程,1982,21(3),p:427~431
[9]李恩德茨·贾:散射表面干涉位移测量应用散斑